

GEORGE Temperospatial Traffic Volume Prediction Model Based on Sparse GPS Samples Jack Snowdon¹ Trevor McGough² Olga Gkountouna² Andreas Züfle²

- analysis
- Previous traffic research has focused on traffic speed
- based on TomTom-reported traffic flow
- Virginia Department of Transportation (VDOT)
 - cars at a point on the road network
 - detectors that measure traffic flow and speed
 - reports
- TomTom
 - specified coordinate location grids
 - TomTom-supported device

¹Massachussets Institute of Technology ²Department of Geography and GeoInformation Science, George Mason University

Results

Overall, 69.7% of confidence intervals captured the true traffic volume • The robust hourly-based prediction consistently proved more accurate than five minute interval approach

Conclusion and Future Work

• Traffic volume prediction has implications in targeted marketing, more comprehensive traffic prediction models, and infrastructure analysis • Spatial interpolation model has been developed to predict coverage at any location on the road network, given direction and TomTom traffic flow • More data is needed from traffic loop detectors

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant CCF-1637541 titled "AitF: Collaborative Research: Modeling movement on